miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3
نویسندگان
چکیده
MicroRNAs (miRNAs) are abnormally expressed in various types of cancer. miR-130a expression and function in gastric cancer has yet to be elucidated. The aim of the present study was to identify the miR-130a expression and function in gastric cancer. miR-130a expression was examined in gastric cancer cell lines and tissues by RT-qPCR. The diagnostic and prognostic significance of miR-130a in gastric cancer was analyzed by receiver-operating characteristic (ROC) curve and Kaplan-Meier analysis. miR130a expression was identified and the diagnostic significance in the serum of gastric cancer patients and healthy controls was analyzed using RT-qPCR and ROC curves, respectively. A target gene for miR-130a was identified using luciferase reporter assays, and gastric cancer tumorigenesis ability was examined by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assays. The results showed that miR‑130a was upregulated in gastric cancer. The low-miR-130a group had significantly improved overall survival compared to the high-miR-130a group. Furthermore, the expression of miR‑130a in plasma in gastric cancer patients was upregulated and diagnostic value for gastric cancer of miR-130a is more effective than the tumor markers carcinoembryonic antigen (CEA) and CA-199. miR-130a directly targeted runt‑related transcription factor 3 (RUNX3) and promoted gastric cancer tumorigenesis by targeting RUNX3. miR-130a may therefore be a useful marker for the diagnosis and prognosis of gastric cancer. Additionally, miR-130a was identified as an oncogene that promotes gastric cancer tumorigenesis by targeting RUNX3.
منابع مشابه
MiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC
Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...
متن کاملTargeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells.
Mature microRNAs (miRNAs) are 21 to 23 nucleotide noncoding RNA molecules that can downregulate multiple gene expression by mRNA degradation or translational repression. miRNAs are considered to play important roles in cell proliferation, apoptosis, and differentiation during mammalian development. The Runt-related transcription factor 3 (RUNX3) expression and activity are frequently downregula...
متن کاملMicroRNA-130a inhibits cell proliferation, invasion and migration in human breast cancer by targeting the RAB5A.
MiR-130a has been demonstrated to play important roles in many types of cancers. Nevertheless, its biological function in breast cancer remains largely unknown. In this study, we found that the expression level of miR-130a was down-regulated in breast cancer tissues and cells. Overexpression of miR-130a was able to inhibit cell proliferation, invasion and migration in MCF7 and MDA-MB-435 cells....
متن کاملmiR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting
Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...
متن کاملMicroRNA-93 inhibits apoptosis and promotes proliferation, invasion and migration of renal cell carcinoma ACHN cells via the TGF-β/Smad signaling pathway by targeting RUNX3.
We investigated the ability of microRNA-93 (miR-93) to influence proliferation, invasion, migration, and apoptosisofrenal cell carcinoma (RCC) cells via transforming growth factor-β/solvated metal atom dispersed (TGF-β/Smad) signaling by targeting runt-related transcription factor 3 (RUNX3). RCC tissues with corresponding adjacent normal tissues were collected from 249 RCC patients. And normal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 34 شماره
صفحات -
تاریخ انتشار 2015